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Developing Entropy of Open Finite-Level Systems

S. M. Chumakov,1 K.-E. Hellwig,2 and A. B. Klimov3

Received October 13, 1999

A method to compute the time dependence of the entropy in the reduced dynamics
is suggested. As a test it is applied to the Jaynes±Cummings model.

1. INTRODUCTION

Let be given an n-level quantum system described in the Hilbert space
Cn, and a quantum field described in the Hilbert space *. Let H be the

Hamiltonian of the composed system acting in Cn ^ * and r 0 its initial

density operator. Then

r (t) 5 e 2 (i/ " )Ht r 0 e(i/ " )Ht

and the reduced dynamics of the n-level component system is given by

r a(t) : 5 trf r (t)

where the indexes a and f refer to the n-level system and the field, respectively.

The partial trace trf is defined by the requirement

tr(Atrf r (t)) 5 tr((A ^ 1) r (t))

to hold for any operator A of Cn. In contrast to the entropy of the compound

system the entropy of the component systems are time dependent. For the
n-level system the entropy is

Sa(t) 5 2 tr r a(t) log r a(t)

The calculation of Sa(t) is no problem if the number of levels is less
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than or equal to four because in this case the roots of the characteristic

equation are explicitly given. If the number of levels is higher, the entropy

can be represented in another way which has already been sketched in ref.
1. In Section 2 this method is given in some detail. In Section 3 explicit

formulas for the purities up to the second order in time are derived. In Section

4 the method is applied to the Jaynes±Cummings model.

2. THE ENTROPY AS A SERIES IN PURITIES

The entropy of a density operator of an n-level system is defined by

S 5 2 tr( r log r ) 5 2 o
n

k 5 1
l k log l k

where the l k are the roots of the characteristic equation

det ( l 1 2 r ) 5 0

Expanding log r into a power series one gets alternatively

S 5 2 tr( r log (1 2 (1 2 r ))) 5 tr o
`

n 5 1

r (1 2 r ) n

n
5 tr o

`

n 5 1

r n

n

where

r n : 5 r (1 2 r ) n

Because of the characteristic equation only the powers of r up to the order

(n 2 1) actually enter into the power series for S. These powers are called

the purities

Pk : 5 tr r k (k 5 1, 2, . . . , n 2 1)

This makes sense because

1

nk 2 1 # Pk # 1

and the left-hand equality holds when the entropy is maximal and the right-

hand equality holds if the density matrix expresses a pure state. In general

the purities are easier to compute than the roots of the characteristic equation.

Consider now the identity

det( l 1 2 r ) 5 &
n

k 5 1
( l 2 l k) 5 o

n

j 5 0

( 2 1)n 2 j m n 2 j l j

where the m n 2 j are symmetric functions of the roots of the characteristic

equation. One easily infers that r fulfils the characteristic identity
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o
n

j 5 0

( 2 1)n 2 j m n 2 j r j 5 0

which is true if r is diagonal, and, because of the unitary invariance of this
equation, it holds generally. It serves to eliminate the powers higher than

(n 2 1) from the power series for S.

Deriving expressions for the terms r n , we set

s : 5 1 2 r

Then

r n 5 r (1 2 r ) n 5 (1 2 s ) s n 5 s n 2 s n 1 1

Inserting now

r j 5 o
j

i 5 0 1 j

i 2 ( 2 1)i s i

[( j
i) 5 0 for i . j ] into the characteristic identity, we get

o
n

j 5 0
o
n

i 5 0 1 j

i 2 ( 2 1) j 1 i m n 2 j s i 5 o
n

i 5 0

h n 2 i s i 5 0

where

h n 2 i 5 o
n

j 5 0 1 j

i 2 ( 2 1)n 2 (i 1 j) m n 2 j

The desired terms r n can now be written as

r n 5 s n 2 s n 1 1 5 o
n 2 1

m 5 0
b ( n )

n 2 m s m

where the coefficients b ( n )
n 2 m have to be determined.

Obviously, we have the relations

b ( n )
n 2 m 5 d n m 2 d n (m 2 1) ( n 5 1, 2, . . . , n 2 1)

and

r n 2 1 5 s n 2 1 2 s n

5 s n 2 1 1 o
n 2 1

m 5 0

h n 2 m s m
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5 ( h 1 1 1) s n 2 1 1 o
n 2 2

m 5 0

h n 2 m s m

Hence, with

b ( n ) : 5 1
b ( n )

1

b ( n )
2

?
?
?
?
?

b ( n )
n 2 , ! : 5 1

2 h 1 1 0 0 ? ? ? 0 0 0 0

2 h 2 0 1 0 ? ? ? 0 0 0 0

2 h 3 0 0 1 ? ? ? 0 0 0 0

? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ?

2 h n 2 1 0 0 0 ? ? ? 0 0 0 1

2 h n 0 0 0 ? ? ? 0 0 0 0 2
we may write

b (1) : 5 1
0

0

?
?
?
0

2 1

1 2 , b ( n ) 5 ! b ( n 2 1) ( n 5 2, . . . , n 2 1)

For n 5 n we have

b (n) 5 ! 1
2 1

1

0
?? ?
0 2 5 ! b n 2 1

Moreover, by complete induction one proves

b ( n ) 5 ! b ( n 2 1) 5 ! n 2 1 b (1) ( n P N \ {1})

Now the entropy is the trace of

o
`

n 5 1

r n

n
5 o

`

n 5 1

1

n o
n 2 1

m 5 0

b ( n )
n 2 m s n

5 ( s n 2 1, s n 2 2, . . . , s 0) 1 o
`

n 5 1

1

n
! n 2 1 2 b (1)
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Using the identity

1

1 2 z!
5 o

`

n 5 1

(z!) n 2 1

we get

#
1

0

dz

1 2 z!
5 o

`

n 5 1

1

n
! n 2 1

Hence, the entropy can be written as

S 5 tr o
`

n 5 1

r n

n
5 (tr s n 2 1, tr s n 2 2, . . . , tr s 0) #

1

0

dz

1 2 z! 1
0
?? ?

2 1

1 2
Defining the rational functions

fm(z) : 5 1 1

1 2 z! 2 (n 2 m)n

2 1 1

1 2 z! 2 (n 2 m)(n 2 1)

we can write the entropy in the form

S 5 o
n 2 1

m 5 0

tr s m #
1

0

fm (z) dz

The simple structure of ! allows us to compute (1 2 z!) 2 1 easily: In

the case of n 5 2 we get

1 f 0 (z)

f1(z) 2 5
1

1 2 z 1 m 2z
2 1 m 2z

m 2 2
For n 5 3 we get

1 f0(z)

f1(z)

f2(z) 2
5

1

1 2 2z 1 ( m 2 1 1)z2 2 ( m 2 2 m 3)z
3 1 ( m 3 2 m 2)(z 2 z2)

1 1 ( m 2 2 1)z 1 ( m 3 2 m 2)z
2

z 2 1 2
The coefficients of the characteristic equation are bijectively related to

the purities by
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Pk 5 det 1
1 2 m n 2 2 3 m n 2 3 ? ? ? ? ? ? k m n 2 k

1 1 m n 2 2 ? ? ? ? ? ? m n 2 k 1 1

0 1 1 ? ? ? ? ? ? m n 2 k 1 2

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0 0 0 ? ? ? 1 m n 2 2

0 0 0 ? ? ? 1 1 2
and

m n 2 k 5
1

k
det 1

1 P2 P3 ? ? ? ? ? ? Pk

1 1 P2 ? ? ? ? ? ? Pk 2 1

0 1 1 ? ? ? ? ? ? Pk 2 2

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0 0 0 ? ? ? 1 P2

0 0 0 ? ? ? 1 1 2
3. PURITIES UP TO SECOND ORDER IN TIME

We now consider the dynamics of the compound system

r (t) 5 e 2 (i/ " )Ht r 0e
(i/ " )Ht

5 r 0 1
it

"
[H, r 0] 2

t2

2 " 2 [H, [H, r 0]] 1 . . .

The reduced density operator of the Cn-component system is given, up to
the second order in time, by

r a(t) 5 trf r 0 1 t trf 1 1

i "
[H, r 0] 2 1 t2 trf 1 2 1

" 2 [H, [H, r 0]] 2
5 A 1 Bt 1 Ct2

where

A : 5 trf r 0, B : 5 trf 1 1

i "
[H, r 0] 2 , C : 5 trf 1 2 1

" 2 [H, [H, r 0]] 2
The purities are
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Pk 5 tra( r a(t))k

and by induction one proves that

( r a(t))k 5 Ak 1 t o
k 2 1

l 5 0
AlBAk 2 l 2 1

1 t2 1 o
k 2 1

l 5 0

AlCAk 2 l 2 1 1 o
k 2 2

m 5 0
o

k 2 m 2 2

l 5 0

AlBAmBAk 2 m 2 l 2 2 2
For uncorrelated initial states

r 0 5 r a ^ r f

The term linear in time vanishes since

tra 1 o
k 2 1

l 5 0

AlBAk 2 l 2 1 2
5 tra 1 o

k 2 1

l 5 0

Ak 2 1B 5 ktra((trf r 0)
k 2 1B 2

5 ktra 1 ( r a)k 2 1trf 1 1

i "
[H, r 0] 2 2 5 k tr 1 ( r a)k 2 1 ^ 1 1 1

i "
[H, r 0] 2

5
1

i "
tr 1 [H, ( r a)k ^ r f ] 2 5 0

4. APPLICATION TO THE JAYNES ± CUMMINGS MODEL

The Hamiltonian of the Jaynes±Cummings model is

H 5 " v 1 1 ^ a+ a 1
1

2
s 3 ^ 1 2 1

" V
2 1 0 a

a+ 02
We assume an uncorrelated initial state

r 0 5 1 r 1 d
d Å r 2 2 ^ ) nÄ & ^ nÄ )

where nÄ , nÄ P N 0, is the photon number. The coefficients of r a(t) up to the

second order are
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A 5 1 r 1 d
d Å r 2 2 , B 5 v 1 0 2 i d

i d Å 0 2
C 5 2 v 2 1 0 d

d Å 02 1
V 2

4 1 nÄ ( r 2 2 r 1) 2 r 1 2 (nÄ 1 1±2 ) d
2 (nÄ 1 1±2 ) d Å 2 (nÄ ( r 2 2 r 1) 2 r 1) 2

Using this, we get for the purity up to the second order in time

P2 5 trA2 1 t2tr(AC 1 CA 1 B2)

5 r 2
1 1 r 2

2 1 ) d ) 2 2 t2 1 v 2 ) d ) 2 1
V 2

2
(nÄ ( r 2 2 r 1)

2 2 r 1( r 2 2 r 1)) 2
From this formula we conclude that:

1. In case ) d ) 5 0 and r 1 5 r 2 there is no time dependence. The purity

P2 5 1/2 is minimal and the entropy S 5 1/2 is maximal. This confirms that

the whole system is in equilibrium when the entropy of the Cn-component
is maximal.

2. In case of r 1 Þ r 2 we have

k ( r 1) : 5 nÄ ( r 2 2 r 1)
2 2 r 1( r 2 2 r 1) . 0

This holds because

k ( r 1) $ k 1 1

2

4nÄ 1 1

2nÄ 1 1) 2 5 2nÄ
2nÄ 2 1 4nÄ 1 1

(2nÄ 1 1)2 $ 0

Hence, since nÄ $ 0, the assumption k ( r 1) 5 0 implies nÄ 5 0 and, finally,

r 1 5 r 2 5 1/2, in contradiction to the hypothesis. In conclusion the coefficient

of t2 is negative s.t.

d

dt
P2 5 0 and

d 2

dt2 P2 # 0

If r 1 Þ r 2, the purity begins to decrease parabolically. Since the state becomes

entangled with the field state because of the interaction the present discussion

does not show that the purity decreases monotonically until the minimum

is reached.

Clearly, these conclusions are not much. The purpose was only to illus-
trate the proposed method on a simple model. The Jaynes±Cummings model

is integrable and the closed form of the solution is well known. This has

been used in ref. 2, where in contrast to the above consideration the field is

considered as the open system and the dynamics of classical-like entropies
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have been discussed. Our method does not assume that a closed solution

is known.
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